Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida.
نویسندگان
چکیده
A 15-kb region of Pseudomonas putida chromosomal DNA containing the mde operon and an upstream regulatory gene (mdeR) has been cloned and sequenced. The mde operon contains two structural genes involved in L-methionine degradative metabolism: the already-identified mdeA, which encodes L-methionine gamma-lyase (H. Inoue, K. Inagaki, M. Sugimoto, N. Esaki, K. Soda, and H. Tanaka. J. Biochem. (Tokyo) 117:1120-1125, 1995), and mdeB, which encodes a homologous protein to the homodimeric-type E1 component of pyruvate dehydrogenase complex. A rho-independent terminator was present just downstream of mdeB, and open reading frames corresponding to other components of alpha-keto acid dehydrogenase complex were not found. When MdeB was overproduced in Escherichia coli, the cell extract showed the E1 activity with high specificity for alpha-ketobutyrate rather than pyruvate. These results suggest that MdeB plays an important role in the metabolism of alpha-ketobutyrate produced by MdeA from L-methionine. Accordingly, mdeB encodes a novel E1 component, alpha-ketobutyrate dehydrogenase E1 component, of an unknown alpha-keto acid dehydrogenase complex in P. putida. In addition, we found that the mdeR gene was located on the opposite strand and began at 127 bp from the translational start site of mdeA. The mdeR gene product has been identified as a member of the leucine-responsive regulatory protein (Lrp) family and revealed to act as an essential positive regulator allowing the expression of the mdeAB operon.
منابع مشابه
Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere.
Using a transposon carrying a promoterless lux operon to generate transcriptional fusions by insertional mutagenesis, we have identified a Pseudomonas putida gene with increased expression in the presence of corn root exudates. Expression of the transcriptional fusion, induced by the amino acid lysine, was detected in P. putida in the rhizosphere of plants as well as in response to seed exudate...
متن کاملIsolation, Purification and Characterization of Proline Dehydrogenase from a Pseudomonas putida POS-F84 Isolate
The purpose of this study was to isolate and characterize Proline Dehydrogenase (ProDH) enzyme frommicroorganisms isolated from soil in Iran. Isolation and screening of L-proline degradative enzymes from soilsamples was carried out. The isolate was characterized by biochemical markers and 16S rRNA geneanalysis. The target ProDH was purified and the effects of pH and temperatur...
متن کاملGenetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3.
The 11-kb sequence encompassing the alkylbenzene upper pathway in Pseudomonas putida 01G3, a psychrotrophic strain able to degrade alkylbenzenes at low temperatures, was characterized. Together with a potential regulator (EbdR), six putative enzymes (EbdAaAbAcAdBC) were identified, and they exhibited highly significant similarities with enzymes implicated in the equivalent pathway in P. putida ...
متن کاملIdentification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance.
The authors previously described srpABC, an operon involved in proton-dependent solvent efflux in the solvent-tolerant Pseudomonas putida S12. Recently, it was shown that organic solvents and not antibiotics induce this operon. In the present study, the authors characterize a new efflux pump, designated ArpABC, on the basis of two isolated chloramphenicol-sensitive transposon mutants. The arpAB...
متن کاملThe davDT operon of Pseudomonas putida, involved in lysine catabolism, is induced in response to the pathway intermediate delta-aminovaleric acid.
Pseudomonas putida KT2440 is a soil microorganism that attaches to seeds and efficiently colonizes the plant's rhizosphere. Lysine is one of the major compounds in root exudates, and P. putida KT2440 uses this amino acid as a source of carbon, nitrogen, and energy. Lysine is channeled to delta-aminovaleric acid and then further degraded to glutaric acid via the action of the davDT gene products...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 179 12 شماره
صفحات -
تاریخ انتشار 1997